Reversing Committed Transactions - CTRL-Z in SQL*Plus!

Peter Robson (independent)

Brief Summary

A suite of dynamic interdependent SQL scripts have been constructed to enable any user to roll back through as many previous commits as required.

The technique, exclusively in SQL*Plus, is based on a table and transaction auditing system, which when combined, makes it possible to reverse the state of any audited tables back to any point in time - irrespective of the number of intervening commits, so long as the audit tables are complete. These recoveries respect all referential integrity constraints.

The presentation will describe the system design, and will demonstrate in a live session how it can be used.

Introduction

The time-consuming procedures necessary to recover erroneously modified data is an unwelcome inconvenience to both the individual concerned, and the dba called in to recover the situation.

It would be more efficient if the user could roll back the errors, through as many previous commits as required, without having to call on the dba. A suite of dynamic interdependent SQL scripts have been constructed to achieve this.

The process has similarities with Log Miner, but is easier to use, does not require the intervention of a dba, can be run by an individual user, and with care may be directed at specific tables of interest. It is powered exclusively within SQL*Plus, and is therefore fully functional against all versions of Oracle.

Background

For several years the author has been using audit tracking techniques in Oracle. All the components have been built in a combination of SQL*Plus scripts and audit triggers (themselves built using SQL scripts). Auditing consists of two parts – the recording of the actual event that changes a database, and recording the details of the changes themselves.

The basis of the technique has already been successfully used to replicate data between a variety of Oracle database instances scattered around the UK. It was considered that it ought to be possible to use this existing technology, to provide the ability to roll back transactions that had already been committed without the need to involve the formal backup and restore procedures. It was realised that a ‘roll forward’ effect could also be obtained, which could be applied to (only) those transactions that had just been rolled back.

The technique introduced here is described as ‘ctrl-z’, and requires definition. In many Windows applications, most particularly editors of various kinds, it is possible to reverse an entry or modification one has made to the text being edited, by holding down the two keys ‘control’ and ‘z’ together (thus known as ‘ctrl-z’). In a similar fashion, it is possible to reverse these rollback corrections by applying the ‘control’ and ‘y’ (‘ctrl-y’) keys. From the database standpoint, this is identical to reversing a transaction, and then reversing that reversal.

With a full auditing and replication infrastructure already in place, the next step was to try an implementation of the ctrl-z and ctrl-y processes.

Prerequisites

Before transactions can be analysed with a view to reversing them, a number of components have to be in place on the local instance. These are:

· All data tables being audited must have 5 audit fields (see below)

· An audit or history table must exist for each data table

· All data tables must have an audit trigger to populate the history table when the data table is modified

· All data tables must have a transaction trigger
· All history tables must have a delete trigger to capture deleted rows

· A single transaction table must log all events in all tables

These objects will be discussed in turn.

Audit Fields: As a minimum, all data tables that are to be available for this processing must contain the following audit fields in addition to the base table fields:

User_entered

Date_entered

User_updated

Date_updated

Func

These fields are populated by the audit trigger whenever the table is subject to modification. Where a new row is inserted, the field ‘user_entered’ is populated with the name of the person making the data entry. The date of entry is similarly inserted into the date_entered field. Lastly, the nature of the modification is inserted into the ‘func’ field – in this case it would be ‘I’ for insert. Updates are treated similarly (user_updated, date_updated), with the ‘func’ field being set to ‘U’.

History Table: This exists for every data table being audited. It contains exactly the same fields as the data table (including the audit fields described above), with the addition of three fields as follows:

Thedate

Theuser

Thefunc

As pre-change rows are copied from the data table into the history table by the audit trigger firing, so these three fields are populated. In the case of an update, there is some redundancy with the similar audit fields in the data table. But where a row is deleted from the data table, the only evidence of that rows’ previous existence is in the history table. The field ‘thefunc’ would be assigned ‘D’ to indicate the row had been deleted from the data table.

Audit Trigger: This exists for every data table being audited. It fires when an insert, update or delete is applied. This is the mechanism that populates the history table.

Transaction Trigger: This trigger must exist for every table being audited. It records each event by populating not the history table, but the single transaction table (below). It fires whenever an insert or update is applied to the data table. Deletions are handled by the History Delete Trigger.

History Delete Trigger: This trigger populates the transaction table whenever a row is deleted. Because the evidence of a deleted row vanishes from the data table, the only indicator of its existence is the pre-deleted row in the history table. The rowid that references this deletion is therefore the rowid for that row being stored in the history table, which is then copied to the transaction table by this trigger.

Transaction Table: Only one such table exists for each instance. It is used to record the salient facts of each and every transaction applied to the database, at the row level. It stores the name of the table being modified, the type of modification (insert, update or delete), the date of modification, a sequence number to indicate the order of modification, the primary key (concatenated into one string) of the row in question, and the current rowid. The rowed is obtained from the base data table for inserts and updates, and from the complimentary history table for deletes (see above). The sequence number is required because in SQL*Plus Oracle cannot resolve time units less than one second, and the order of logging changes is vital if referential integrity is to be maintained.

An additional single character flag indicates when the transaction being recorded is a ‘normal’ transaction, a ctrl-z transaction, or a ctrl-y transaction. It is important to distinguish these types.

Together, all the above objects are sufficient to support not only backup and recovery, but also asynchronous master-master replication, as well as ctrl-z and ctrl-y functions against individual tables. In every case, full respect is taken of all referential integrity constraints.
Building the Components

A number of tables can be prepared for auditing very quickly, by running a suite of prepared scripts. These build the above components by dynamically referencing the Oracle data dictionary and generating the scripts specific to each table being audited. These automatically generated scripts are themselves then run, thus creating all the necessary objects. All these scripts use nested SQL and spooling techniques (see paper ‘Using SQL as a Code Generator’, UKOUG 2000, where the technique is described).

Typically, the construction of these components would use string variables containing the name of the table for which the various objects were being built. These variables (table names) are passed to the script as arguments. Thus the construction of the components for an example table called ‘test_table’ would appear as follows:

@add_audit_fields test_table

@build_history test_table

@build_aud_trig test_table

@build_del_trig test_table

Where a large number of tables require these components to be built, it is a simple matter to build a SQL script which itself creates the above pattern of build calls, e.g.:

Select ‘@add_audit_fields ‘||table_name from user_tables where ….. ;

… the ‘where’ clause defining the list of tables for which the components are to be built. The ease with which these components can be built enables the entire audit infrastructure to be built very quickly.

The scripts used to achieve these builds can be found on the authors’ web site – www.justsql.com, but example scripts used to add audit fields to an existing table, and then to build a history table are attached as an Appendix.

Function Overview

Although this paper is primarily concerned with the ctrl-z and ctrl-y functions, these are so integrated with the overall auditing system that they can only be understood if that system too is clearly appreciated. The sequence of events for each of the major modifications to a table will therefore be briefly outlined:

Insert:

1. A new row is entered into a data table

2. The table audit trigger populates the fields date_entered, user_entered and func (‘I’).

3. The transaction trigger records the details of this transaction in the central transaction table (see above for the relevant fields).

Update:

1. An existing row is updated

2. The audit trigger populates the date_updated and user_updated fields, and sets the func field to ‘U’. It also copies the pre-change row to the history table, and simultaneously populates the three audit fields in that table (thedate, theuser, thefunc).

3. The transaction trigger records the details of this transaction in the central transaction table.

Delete:

1. An existing row is deleted from the data table.

2. The audit trigger DOES NOT TOUCH the fields date_updated or user_entered in the data table, but copies the pre-deleted row to the history table, where the three fields thedate, theuser and thefunc are populated (the latter with ‘D’ of course).

3. The history transaction trigger stores the rowid of the deleted row from the history table into the central transaction table.

Everything is now in place to enable backup, replication, or the single transaction ‘ctrl’ functions to apply. In this paper, the details of the ctrl-z and ctrl-y processes will be explained in detail.

These ‘ctrl’ processes operate on a row by row basis. Although the full recovery system (not described here) enables one to specify exactly how many transactions are to be recovered, with the ctrl process, one simply initiates the process, and only the last transaction is reversed.

Note that the ‘ctrl’ processes each apply to an individual transaction as expressed by the modification of one row. They take no account of commit sets. Any transaction may comprise the only part of a commit, or it may be one of several hundred transactions within one commit – the ‘ctrl’ still only applies to one row at a time.

The ‘ctrl’ process in detail

The last transaction at any point in time is identifiable because it is referenced in the transaction table with the last (highest) transaction sequence number. Thus the relevant transaction to reverse can be quickly found, which in turn locates the rowid of the row in the data table which has been either inserted or updated, or the rowid in the history table containing the copy of the deleted row.

If an insert is being reversed, it is a simple matter to delete the row in the data table on the basis of the rowid retrieved from the transaction table.

If an update is being reversed, a fresh update script is dynamically built (by referencing the data dictionary, and using code generation techniques) to apply the pre-updated row, retrieved from the history table, as an update transaction against the last version.

In the case of reversing a deleted row, the deleted row is simply retrieved from the history table on the basis of its rowid, and inserted back into the data table. To facilitate this process, a view is built on each history table that provides an identical attribute list as is found in the data table (e.g. the three history table audit fields are excluded from the view).

Each one of these ‘ctrl-z’ processes are transactions in their own right. Accordingly, they too will be audited and logged into the various history tables and the transaction table. It is therefore vital to distinguish the ‘ctrl’ process from a ‘normal’ transaction. This is done by setting a flag (the single character ‘Z’) in the transaction table identifying that transaction as a ctrl-z one, to ensure that a succession of ctrl-z processes will look at successively earlier transactions.

Conversely, applying a ctrl-y process will result in the last ctrl-z transaction being reversed. Exactly the same logical processes will be carried out as described above, but this time each transaction is identified by looking for the lowest transaction number where the ctrl-z flag has been set to ‘Z’. On the completion of the ctrl-y process, the ctrl flag in the transaction table is set back to null.

This sequence of flags ensures that no ctrl-y process can operate after the last ctrl-z transaction has been reversed. Indeed, a ctrl-y transaction can ONLY operate against a pre-existing ctrl-z transaction.

Because of the complimentary nature of the ctrl-z and ctrl-y process, it is quite possible to cycle backwards and forwards, at once reversing transactions, and then restoring them. There is no limit to the number of times this can be done (if only a question as to why one would want to). Similarly, the only limit to the extent to which one can ctrl-z (move backwards) through successive transactions is bounded purely by the extent of the history and transaction log tables. If both tables are complete for the last ten years – one can reverse back through ten years of transactions… What is interesting is that the ‘ctrl’ functionality ‘per se’ does not have to have been in place for those ten years, merely the auditing system already described.

There is a further subtle aspect to these ctrl changes. In the event of a ‘normal’ transaction taking place following one or more ctrl-z or ctrl-y transactions, all remaining ‘Z’ ctrl flags are set back to null. This ensures that any subsequent ctrl-z transaction would start from a new base line.

It was noted that these processes respect referential integrity. This is because every transaction is reversed in exactly the same REVERSE order that the original transactions took place in. Therefore, the last transaction may apply to one table, and the transaction immediately prior to that may apply to a different table – the user has no control over which table is being reversed. And correctly too – as that would allow a degree of freedom which might impact existing integrity constraints. That said, the restore functions which have already been built using these systems do allow one to identify a single transaction and to reverse that alone, but use of this has to be done with care for the above reasons. There is a danger that careless use of this selective process could fail for reasons of constraint conflict.

Operation

The ctrl transactions take place entirely within SQL*Plus. They are simply SQL scripts, which are run to achieve whichever effect is required. These scripts are currently named as ‘ctrlz.sql’ and ctrly.sql’, but they are actually implemented in the authors’ system by use of a small public domain macro (‘Shortkeys’, from www.shortkeys.com) which intercepts keyboard input. The two keys in combination ‘#z’ and ‘#y’ have been defined to run either of the above scripts respectively, thus providing the ‘two keystroke’ input that several Windows applications support. In use:

SQL>#z
(last transaction reversed)

SQL>

SQL>#y
(last reversal reversed, system returned to pre-ctrl-z status)

SQL>

Conclusion

The simple objective has been met, but only because a considerable part of the required infrastructure was already in place. As far as the user is concerned, the operation of the ctrl-z and ctrl-y functions is simplicity itself – which is exactly the way it should be.

Peter Robson

10 Ashley Drive

Edinburgh

EH11 1RP

Appendix – Adding Audit Fields to a Data Table, and Building a History Table

Two scripts are presented, which show the use of dynamic, or nested SQL*Plus to generate the specific scripts required to apply modifications to a chosen data table, followed by a script used to build the associated history (audit) table for the chosen data table. (See web site justsql.com for further examples of the scripts used in the presentation and referred to in this document).

1. Script One, Adding audit fields to a table

This script takes the name of the table to which audit fields are to be added as the on-line argument to the script. Run it as follows:

@add_audit_fields TABLE_NAME

But note that a more sophisticated version of this same script will be posted on the JustSQL web site by December. This will use a decode function to check whether there are any existing audit fields already present.

--

-- ADD_AUDIT_FIELDS.SQL

--

-- Use this script to add the 5 audit fields.

--

-- Peter Robson, December 2003.

--

set echo off

--

-- Use: SQL>add_audit_fields TABLE_NAME

--

-- The auditing system requires the following 5 audit fields to be

-- present in every table which is to be audited:

--

-- user_entered varchar2(30) Identity of person ENTERING data

-- date_entered date DATE new data was entered

-- user_modify varchar2(30) Identity of person MODIFYING data

-- date_modify date DATE existing data was MODIFIED

-- func char(1) Function (Insert, Update or Delete)

--

-- Each field will be added as a separate string in case

-- one or more of the fields are already present. Note that no errors

-- will be reported if some or all audit fields already exist.

--

set pagesize 0

set verify off

set feedback off

--

alter table &1

add (user_entered varchar2(30));

--

alter table &1

add (date_entered date);

--

alter table &1

add (user_modify varchar2(30));

--

alter table &1

add (date_modify date);

--

alter table &1

add (func char(1));

--

-- all done

--

set termout on

set verify on

--

desc &1

--

undefine table

set echo on

--
2. Script Two, Building a history table to store pre-change copies of rows from the associated data table

Unlike the first script, this one makes full use of nested scripts, to build up a complete script which when run, will then create the correct history table. It is documented within the body of the script. An intermediate table is used, which is then dropped.

--

-- BUILD_HIST.SQL

--

-- Build a history table. Takes on-line table name as argument

--

-- Use: SQL>build_hist TABLE_NAME

-- where ‘TABLE_NAME’ is the name of the data table

--

-- Peter Robson December 2003

--

set termout off

set echo off

set recsep off

-- pgr 1999

set pagesize 0

set linesize 333

set verify off

set feedback off

undefine table

--

set termout on

select ' ' from dual;

select table_name||' exists.' from user_tables

where table_name= upper('&1');

select ' ' from dual;

select 'If no result, CHECK MASTER TABLE EXISTS!' from dual;

set termout off

create table dump_hx

 (tname varchar2(30));

insert into dump_hx (tname) values ('&1');

spool a.sql

select

 'create table '||substr(tname,1,25)||'_hist as select * from &1 where 1=2;'

 from dump_hx;

spool off

@a.sql

spool a.sql

select

 'alter table '||substr(tname,1,25)||'_hist add '|| chr(10) ||

 '(theuser varchar2(10) not null,'|| chr(10) ||

 'thedate date not null,thefunc char (1) not null);'

 from dump_hx;

spool off

@a.sql

set termout on

select ' ' from dual;

select 'History table is '||substr(tname,1,25)||'_HIST' from dump_hx;

select ' ' from dual;

set termout off

spool a.sql

select 'desc '||substr(tname,1,25)||'_hist' from dump_hx;

spool off

set termout on

@a.sql

drop table dump_hx;

set pagesize 24

set verify on

set recsep wrap

set feedback on
Reversing Committed Transactions – CTRL-Z in SQL*Plus! / Peter Robson
Page 2 of 9

